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Abstract. This paper presents a discussion about a spin model arising out of single- and double- 
electron exchange processes. The Hamiltonian which consists of the usual Heisenberg exchange, 
biquadratic exchange and thm%atom coupling is studied using the Green function equation-of- 
motion method within the random-phase approximation. The effects of biquadratic exchange 
and three-atom coupling on the magnetization curves, quadrupolar ordering and the transition 
temperature Tc are studied. It is shown that the magnetization changes from second to first order 
at Tc depending on the strengths of the biquadratic and three-atom coupling. It is also seen that 
Tc becomes equal to zero at certain values of the parameten. The results are compared with 
those of molecular-field theory 

1. Introduction 

It was shown by Munro and Girardeau (1976) that, when there are two electrons present 
in an unfilled shell, both singleelectron exchange and doubleelectron exchange processes 
occur, resulting in a biquadratic exchange term and a threeatom coupling term in addition 
to the usual Heisenberg bilinear exchange. This kind of spin model is usually believed 
to arise from complicated spin arrangements, such as canted or spiral spin configurations, 
or from the simple antiferromagnetic case. However, we shall restrict this discussion to 
ferromagnets only. Considering nearest-neighbour interactions, one can describe the above 
exchange processes by means of the following Hamiltonian: 

where 00 = pH,, p is the magnetic moment per atom, Ha is the applied magnetic field, J j j  is 
t the usual bilinear Heisenberg exchange integral arising from the singleelectron exchange, 
and Ji; and Lijl are the biquadratic and three-atom exchange interactions respectively, 
arising from the double-electron exchange process. 

The above Hamiltonian for the special case Lij, = 0 has been studied extensively in 
the past (Adler er al 1976, Chakraborty 1976, 1977, 1989, liwari and Srivastava 1980) and 
the case with J b  = 0 was studied by A h m i t  and Westwansky (1978), Adler and Oitmaa 
(1979) and Mitra and Chakraborty (1994, hereafter referred to as I). 

The complete Hamiltonian expressed by equation (1) has not yet been studied. Only 
a restricted case was considered by Munro and Girardeau (1976) using the molecular-field 
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approximation (MFA). They considered that Lijl = A’J; so that Ltjf vanishes simultaneously 
with .I$ (A’ being a parameter). 

The purpose of the present paper is to study equation (1) without any of the restrictions 
mentioned above. We shall use the method of double-time thermal Green functions and 
utilize the random-phase approximation for decoupling the higher-order Green functions. 
The method is the same as used by us in I. The chief motivation is to study the competition 
between the biquadratic exchange and the threeatom exchange. The plan of the paper is 
as follows. 

Section 2 presents the necessary mathematical equations for deriving the energy 
spectrum and other thermodynamic quantities. Section 3 contains some suitable 
approximations for computing the statistical variables. The results and discussion are 
presented in section 4. Section 5 contains some concluding remarks. 

S N Mitra and K G Chakraboe 

2. Green functions and ehergy spectrum 

The Green function equation-of-motion method using the random-phase approximation 
was developed in I by the present authors for a Heisenberg ferromagnet with three-atom 
exchange, i.e. for the case with Jjj # 0, L ~ J  # 0, J; = 0. To include the biquadratic 
exchange we proceed along the same lines as the method in I. We consider the following 
Fourier-transformed Green functions: 

G I  = W;; Si)) (24 

Gz = ((U:; SJ) (26) 

where k and q are the momentum indices and 

Uk = s;q+ s,’s:. (3) 

The equations of motion can be shown to be 
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and biquadratic exchange constants, respectively. Equations (44 and (4b) resulted from the 
random-phase approximation used to decouple the higher-order Green functions appearing 
in the corresponding equations of motion. Solving these two equations, we finally arrive at 
the following expression for the energy spectrum: 

M ~ = ~ o r " J o + f m ( 4 - h ) L t k + 2 L m L ~ -  $n(Z+L)LW 

b'fk = [mJk(1 - a') - a'mg + km(4 - 1)Ltk - m Z ( h  - Lor)]' 

- m2(LW - LOk)[ZJk(h - m) + 4(4 - L)(h - m)L& (10) 

+ 2dm(Jo  + Jd - $d(A + 2)Jol 

- or'h(J0 - Ja)[f,k(4 - h)Lkk - $dJo(h + 8)  4- hJk(2 - CY')]. 

Equation (9) gives us two branches of energy spectra. However, both these spectra are 
not physically acceptable. The physical validity is tested by inspection of the ground-state 
form. Two such limiting cases are well known: one for 01 = 0 and the other for 01' = 0. In 
the first case, the energy spectrum remains unaffected, for the spin-1 model, at T = 0 and 
in the second case the exact form has been determined and is given in the literature. These 
two cases are satisfied if we consider only the negative sign in equation (9). Henceforth we 
shall therefore consider only the negative sign. 

3. Approximate forms for physical quantities 

Although we shall concentrate only a single energy branch, it is very difficult to carry 
out further simplifications for the derivation of different physical quantities unless some 
appropriate approximations are made. Firstly, we use the nearest-neighbour approximations 
for L so that 

with Yk = (l/z)C,exp(ik . a), 6 being the nearat-neighbour vector and z being the 
number of nearest neighbours. 01 = L / J ,  where L is the nearest-neighbour three-atom 
coupling constant. The energy spectrum thus reduces to the following form: 

mk = w o + Z m J z ( l  -yk)[l--fa'+aO1z+bfa+aO1zyk+ f ( y k ) ]  (12) 

where 
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Figure 1. Magnetization curyes for a Heisenberg ferromagnet with biquadratic and three-atom 
interactions: m is ploned against k i T / 4 / r  for a = 1, z = 6. The ordinate is shown by a thick 
line which corresponds to U’ = 00. The broken lines refer to the fint-order transition. The 
cumes for U’ > 0.107 correspond to semndarder transitions. 

with 
A = u[aa(A - m) - a’m + $a’@ + 2)] + $?[act + &‘(8 +A)]  

B = u(A - m  +a”) + fd(2 -a’) 

C = N [ u ( A  - m)  + $a’A] 

D=aa+a’+2um 

. E = 1 -or’+2um 

N = aaz 

and 

a = (4 - A116 b = $(z - l ) (A + m) U = a(z - l ) j 2 .  

The results for m and A can be calculated from the equations 

m = A(l+2y) 

I j A  = 1 + 3y + 3yz 

(13) 

(14) 
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kBT / 4  J Z  
Figure 2. The quadrupolar ordering pmmeter A plotted against k g T / 4 / r  for 01 = 1, L = 6. 
The cuwes fall more rapidly than chose for m do. 

where 
1 

Y = C[exP(Bok) - 114 
k 

with p = l / k s T ,  4 being the Boltzmann constant. 

term of the expansion of f ( y k )  we obtain the following approximation for wk: 
The form of Wk shown by equation (12) cannot be used. Considering only the leading 

UP, + d P Z  
LY‘ + aa + 2um 

P =  
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Figure 3. The variation in critical value of first-order-to-second-order transition cl, with respect 
to lhe changes in m' for sc BCC and FCC lattices. 

The results for the Curie temperature Tc can be obtained by taking the limits WO + 0, 
m + 0. We obtain 

where Ro and FO are the values of R and F at Tc, with 

z - p(1-  1) 

1-LL 
F N  

4. Results and discussion 

In this section we present a detailed discussion about the thermal variation in m and A and 
about some novel features revealed by Tc in the parameter space. In I the case a' = 0 
was studied and it was seen there that, for CY exceeding a certain critical value a,, the 
second-order transition becomes first order and that ac is different for different lattices. cc, 
may therefore be called a hicritical point. When the biquadratic exchange is included, the 
essential condition for the existence of a tricritical point remains the same but a, would 
then depend sensitively on a'. We have reached this conclusion after a large number of 
observations on the behaviour of m with temperature for different values of a and a'. 
Figures 1 and 2 demonstrate the thermal variation in m and A, respectively, and figure 3 
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Figure 4. The vaiation in a; (the critical value of e' where TC vanishes) with respect to a. The 
full e w e  labelled GF I is obtained fmm the condition FO = cc and the broken c w e  labelled 
GF 2 is obtained from the condition Ro = 0. The results obtained by M u m  and Girardeau are 
also shown by the curve labelled MFA. 

shows the variation in ac with a' for SC, BCC and FCC lattices. It is seen that, for all lattices, 
a, increases with increase in a'. Also, the a, versus a' curve becomes flatter as z increases. 

Before discussing the novel aspects of magnetization curves and the quadrupolar 
orderhg we shall concentrate on another interesting feature of the model considered. We 
note that the transition temperature vanishes for certain values of a and a'. The result 
agrees with those obtained from the MFA. However, in the present Green function approach 
the quantitative results are very different. We note that, for T, to vanish, one may have 
RO = 0 or FO = CO. The former condition yields 

a n 2  (sa - 5 )  I + a'[l - fa + +a2 + +"z - l)] + fa(1 + ;az) = 0 

a (p - 5 )  + a'[l - fa + p ( Z  - 1)1+ 5". = 0. 

(20) 

and the latter yields 

(21) 

.~ We have therefore four roots of d. However, two of these are unphysical. These roots 
arise from the negative sign before the discriminant. The reason that these are unphysical is 
that these roots give ab = 0 for a = 0. Such a point in the parameter space is meaningless 

h 2  1 
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Figure 5. The variation in kBTc/4Jz with respect to (I for (I‘ = 0 and 1 and L = 6 and 8. 

since this would correspond to a simple Heisenberg model. Considering the other two 
roots, we have plotted a& against a in figure 4. Two curves are obtained: one for FO = w 
and the other for RQ = 0. The latter curve deviates more than the former compared with 
the MFA curve. For small values of a,  the values of ab obtained from the former agree 
with those of the MFA. The marked difference from the MFA result is seen from the fact 
that ah goes to infinity at a = 0.75 in both cases, while the MFA does not yield such a 
restriction. Furthermore, it has been found that, in the vicinity of a& obtained from RO = 0, 
one finds a short range where an isolated first-order transition occurs, which is absurd. So, 
we concentrate only on the FQ = w condition which yields a broad range around a;I where 
a first-order transition occurs followed by a second-order transition. These are discussed in 
more detail in the following paragraph. 

To begin with, we would like to point out one interesting feature. The condition FO = w 
as stated above yields, for z = 6, q = 1, the result a;I = -0.1678 where TC vanishes. In 
the computation of m for the same values of z, CY and a’ we note that m is double valued 
at Tc = 0: one value is m = 0 and the other m = 1. This establishes the validity of the 
condition FO = 00. For several other values of a’, m has been computed and the results 
are shown in figure 1. The case a‘ = a; is indicated by the thick line on the ordinate. 
As a’ is increased from a; to ab = 0.107, m remains double valued at T,. These are 
indicated as broken lines while the case for a; is shown as a full curve suggesting the onset 
of a second-order transition. The criterion for the order of transition which we are using is 
that, for a second-order transition, m is single valued everywhere and is zero at Tc. having 
no solution beyond Tc. The criterion for a first-order transition is that m is double valued 



Heisenberg spin model with electron exchange 10541 

Figure 6. Competition between U and (I': ksTcl41z plotted against a (or U'), keeping (I' (or 
(I) fixed. The full curve without crosses represents the results for (I' = 0 and the full cuwe with 
crosses repments the results for U = 0. These a e  compared with the corresponding MFA results 
shown as broken curves with and without crosses. 

everywhere, even beyond Tc, but at T > TC a bulge occurs, the curve extending to a certain 
extent and going to zero at Tc. A better criterion should have been used by expanding m in 
powers of m, i.e. m = am fbm', etc, but in the present case, owing to enormous analytical 
complexities, it is very difficult to write m in the form of such an expansion. 

Figure 2 represents the nature of the variation in A with respect to ksT/4Jz.  The 
qualitative nature of the variation is identical with that of m. Also, A goes to zero at TC 
along with m for all cases. These results indicate that no separate quadrupolar phase exists. 
However, in the case of the first-order transition the magnitude of discontinuities is much 
less than form for specific values of a and a' and for a particular lattice structure. Therefore, 
the ferromagnetic ordering of spins almost completely dominates the quadrupolar ordering 
at temperatures just below Tc. 

The variation in keTc/4Jz with respect to a for a' = 0, l  and z = 6,R are shown 
in figure 5. The qualitative natures of variation for both these lattices are identical. For 
a' = 0, Tc first increases sharply from zero and then increases very slowly, approaching 
ultimately the asymptotic MFA value. For a' = 1, TC always increases sharply for both the 
lattices. 

Figure 6 demonstrates the competition between the three-atom exchange and biquadratic 
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exchange. The values of k ~ T c / 4 J z  are plotted against 01 (or a'), keeping a' (or a) fixed. 
The full line with the crosses represents the variation in kBTc 1452 with respect to 01' (three- 
atom exchange is absent) and the full line represents the variation in ksTcf4Jz against 
01 (biquadratic exchange is absent). The broken line with the crosses and the broken line 
represent the corresponding MFA results. 
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5. Concluding remarks 

In the preceding sections some novel aspects of a modified Heisenberg ferromagnet have 
been studied within the framework of the RPA Green function equation-of-motion method. It 
is not possible at present to point out precisely the compounds where the present Hamiltonian 
is exactly valid. However, there exist some hexagonal insulators with chemical formula 
ABX3 where both biquadratic exchange and three-atom exchange might be believed to 
be present. A typical example of an ABX3-type compound is CsMnBr3 where Mn is 
the magnetic atom. Mn atoms form linear chains along the hexagonal c axis and form a 
triangular lattice in the basal a-b plane, giving rise to three-atom exchange, associated with 
a biquadratic exchange. The mechanism which gives rise to these exchange processes is 
not of course obvious and is the subject of our future investigations (Gaulin et al 1989, 
Johnson et al 1979). 

Furthermore, it is important to mention two aspects: usually in reality the present 
Hamiltonian should correspond to antiferromagnets or complex spin structures and one 
should consider the sublattice structure for realistic evaluation of the physical quantities; 
secondly, since we have considered the spin-1 model, no question of partial alignment of 
spins arises. In future investigations we shall study the higher-spin cases. 

Finally, we would like to point out that both the qualitative and the quantitative results 
are extremely sensitive to the estimation of F. Here we have considered only the leading 
term. In addition to this, since we are discussing the statistical effects of higher-order 
exchange processes, the other terms of the expansion of spectral function y should also be 
included. 
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